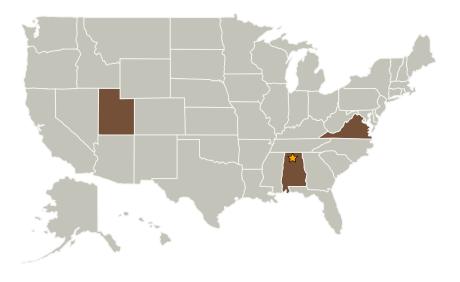
Small Business Innovation Research/Small Business Tech Transfer

The Cyogenic Evaluation of Irradiated Composite Materials for Use in Composite Pressure Vessels, Phase I



Completed Technology Project (2005 - 2006)

Project Introduction

The intent of this proposal is to develop key building block technology for lightweight composite structures suitable for cryogenic fuel depot storage as well as human in-space habitat. The effort will incorporate and expand on previous work by the participants in the cryogenic performance of composite materials as well as improved impact technologies for micro-meteor/space debris survivability. It will then develop radiation resistant capabilities. In order to develop reliable composite structures for use as cryogenic fuel storage, human habitation, or other mission critical application a solid understanding of constituent material environmental capabilities is required. While good progress has been made in expanding the knowledge of how composite fibers and matrix systems (resins) react to loads and strains at extremely cold temperatures little to no effort has been made to incorporate radiation exposure such as would be encountered with in-space fuel storage depots. With a view to developing dual-use lightweight composite structures the proposed effort will develop improved composite material resistance to the harsh radiation environment a spacecraft would be expected to encounter during the life of its mission. Our intent is to develop robust light weight composite structures which are cryogenic capable as well as impact and radiation resistant.

Primary U.S. Work Locations and Key Partners

The Cyogenic Evaluation of Irradiated Composite Materials for Use in Composite Pressure Vessels, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Marshall Space Flight Center (MSFC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

The Cyogenic Evaluation of Irradiated Composite Materials for Use in Composite Pressure Vessels, Phase I

Completed Technology Project (2005 - 2006)

Organizations Performing Work	Role	Туре	Location
★Marshall Space Flight Center(MSFC)	Lead	NASA	Huntsville,
	Organization	Center	Alabama
HyPerComp	Supporting	Industry	Brigham
Engineering, Inc.	Organization		City, Utah

Primary U.S. Work Locations		
Alabama	Utah	
Virginia		

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigators:

Steve Savoy James P Patterson

Technology Areas

Primary:

- TX05 Communications, Navigation, and Orbital Debris Tracking and Characterization Systems
 TX05.1 Optical
 - Communications

 ☐ TX05.1.7 Innovative

Signal Modulations